MATH. SCAND. 77 (1995), 184-188

ON SHORT EDGES
IN STRAIGHT-EDGE TRIANGULATIONS

NOGA ALON, MEIR KATCHALSKI, ANDY LIU and BING ZHOU

Abstract.

If a triangulation is drawn with straight edges, the ratio of the lengths of the shortest and the longest
edges does not have to go to zero, even if the number of vertices goes to infinity. In this paper bounds
are given for the above ratio, when certain restrictions are placed on the maximum degree of the
triangulation.

A triangulation of the plane is a planar graph in which each region, including the
infinite one, is bounded by exactly three edges. For standard terminology in
graph theory, see, for example, [1]. The triangulation is said to be straight-edged
if the graph is drawn with line segments as edges, so that it represents a triangle
which is subdivided into smaller triangles. In this paper, a triangulation is always
taken to mean a straight-edged triangulation.

Denote by T, a triangulation with n-vertices and let d(T,) and I(T,,) respectively
by the lengths of the longest and shortest edges of T,. The ratio I(T,)/d(T,) is
denoted by a(T,).

As the number of vertices in a triangulation increases, the area of the smallest
triangle divided by the area of the outer triangle must decrease to zero. However,
such is not the case with the length of the shortest edge.

We constructed triangulations 7,, with n arbitrarily large satisfying
o(T,) > 1/4. Two persons at a seminar of Micha A. Perles in Jerusalem ([2]), after
seeing our construction, provided a better one. Unfortunately, their names are
not known.

Figure 1 is an example of such a triangulation. The large triangle has vertices
Cat(0,0),Dat(3,0)and A, onx = 1. By isany pointon x = 2 within A;CD and it
isjoined to 4;, Cand D. A4, is any point on x = 1 within B, CD, and it is joined to
B,, Cand D. The point B, is chosen in a similar manner. The construction can be
continued indefinitely. The length I(T,) is greater than 1 regardless of how large

Received June 4, 1992; in revised form August 15, 1994.



ON SHORT EDGES IN STRAIGHT-EDGE TRIANGULATIONS 185

B2
c Fig. 1. k= 1. D

nbecomes. By compressing the large triangle towards CD if necessary, CD will be
the longest edge. Hence, d(T,) = 3 and «(T;) > 1/3.

Note that the above bound is the sharpest possible. Here is a sketch of the
proof:

Assume that d(T,) = 1, so that the area of the large triangle is at most 1/2. It is

divided into exactly 2n-5 smaller triangles. It follows that at most c\/; of them
can have an area exceeding 1 /\/r;, where cis a positive constant. All others, that is

at least 2n-5-c ﬁ, have one angle very close to = and two angles very close to
0 when n is large and «(T,) remains above a constant value (since the area of
a triangle with sides a and b and angle 6 between them is (ab sin 6)/2).

Among these triangles, one can find two with a common edge, say xvy and yvz,
such that angle xvy is very close to = and angle yvz is very close to 0. Either x-v-y-z
or x-v-z-y is almost a straight line. Since d(T;) = 1, wecannothave [(T;) > 1/3 + ¢
for any fixed positive ¢ and large n.

In Figure 1, both C and D are joined to all other vertices as well as to each
other. It is natural to ask what bounds can be obtained for «(T,), when certain
restrictions are placed on 4(T,), the maximum degree of T,.

THEOREM A. Let k be a fixed positive integer. Then, for an infinite number of
values of the integer n, there exists a triangulation T, which satisfies
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a(Ty) > 1/(2k + 1), with A(T;) < 2(n/2)** + 2.

PROOF. Let n=1+2(1 + (m — 1) +... + (m — 1)¥), where m is a positive
integer; note that 2(m — 1)* < n. A triangulation T,, with the desired properties is
constructed.

The argument is inductive. The case k = 1 has already been dealt with in
Figure 1. To give a clearer illustration of the general construction, consider the
case k = 2. Figure 2 illustrates the case m = 2.

A
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21

Fig. 2. k=2.

Here, the large triangle has vertices E at (0,0), F at (5,0) and 4, ; on x = 2.
Take C; on x =1 and D, on x = 4 such that C,D, is parallel to EF and lies
within A, ,EF. Join C, to E and A, 4, and join D, to F and A, ;. We now
triangulate 4; ;C;D, as in the case k = 1, using the points 4; ,4; 3,..., 41 m—1
onx = 2and the points B, , By 5,...,B; »—; 0nx = 3. Note, however, that C, is
not joined to D;.

Take 4, ; onx = 2 within B, ,,_ ,C,D, and join it to all three vertices as well as
E and F. Take C, on x = 1 and D, on the line x = 4 such that C,D, is parallel to
EF and lies within A, ; EF. The construction is repeated until 4,, ; is chosen and
joined to E and F.

The total number of vertices is exactly equal to n. The degree of 4, ; (and of
Apm,1)is 5. The degree of A; ; is 8for 2 < i < m — 1. The degree of 4; ;(and of B; ;)
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is 4 for all other values of i and j. The degree of C; (and of D;) is 2m for all i, as is the

degree of E (and of F). Hence, A(T,) = 2m < 2\/n/—2 + 2. By compressing the
large triangle towards EF if necessary, we can make EF the longest edge. Hence,
d(T,) = 5. Since I(T,)) > 1, o(T,) > 1/5.

We now consider the general case. Let the large triangle be A, ; EF, with E at
(0,0), Fat(2k + 1,0)and A, ; onx = k. Take C; onx = 1and D, on x = 2k such
that C, D, is parallel to EF and lies within 4, ; EF. Join C, to E and 4, ;, and join
D, to Fand A, ;. Wecan triangulate A, ;C;D, asin the case k — 1. We now take
anappropriate point A, ; on x = kand continue with the inductive construction.

The total number of vertices in this triangulation is exactly n. It is routine to
verify that, as in the case k = 2, none of the vertices has a degree exceeding
2m < 2(n/2)"* + 2 and that «(T;) > 1/(2k + 1). This completes the proof of
Theorem A.

THEOREM B. For fixed positive integer k and n sufficiently large, every T,
satisfies a(T,) < 1/k, provided that A = A(T,) < (nn/6k?)t/&+1),

Proor. The proof uses an indirect argument. Consider any T, with A(T;) as
provided. Assume that d(T,) = 1, so that [(T,) = «(T,). Suppose that a(T;) = 1/k,
and derive a contradiction.

We call a triangle in T, good if its area is less than S/2, where S = 54*/n. Note
that S is very close to 0 when n is sufficiently large.

Call an angle 6 thin if it satisfies 0 < @ < 6/5k%S and call it thick if
n—6/5k*S <0 <m.

Let a and b be the lengths of two edges of a good triangle, and let 6 be the angle
between them. Then absinf < S. Since we assume that a = 1/k and b = 1/k,
sin @ < kS. Since k is fixed, sin 6 is very close to 0 and it follows that 6 is either
thin or thick. Thus each good triangle has exactly one thick and two thin angles.

Consider a vertex v surrounded by good triangles. Then every angle formed by
two consecutive edges at v in clockwise order is either thick or thin, with at most
two thick angles formed by consecutive edges at v. The sum of all the thin angles
formed by consecutive edge at v is less than 4(6/5)k*S < n. Hence, there are
exactly two thick angles formed by consecutive edges at v. It follows that for any
edge incident with v, there is another edge incident with v and forming a thick
angle with the given edge.

Note that the two edges forming a thick angle are not required to lie on the
same triangle of T,.

Let V denote the set of vertices not surrounded by good triangles. In particular,
the three vertices of the large triangle are in V. Since the area of this triangle is
at most 1/2, there are at most 1/S triangles which are not good, so that
V] £ 3(1 + 1/S). The total number of vertices accessible from V by a path of
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length not exceeding k edges is at most 3(1 + 1/S)(1 + 42 +... + 4% <
54%/S = n, since 4 = 3 and S is small.

This means that there exists a vertex x, which is inaccessible from V by any
path of length not exceeding k edges. In particular, x, is surrounded by good
triangles. Let x; be any vertex adjacent to x,. Then x, is also surrounded by good
triangles. Hence, among vertices adjacent to x,, we can choose x, such that angle
XXX, is thick. We can continue to choose vertices in this manner until we have
Xi + 1, which may no longer be surrounded by good triangles.

By our assumption x;x;;; has length at least 1/k, for 0 <i < k. Thus, the
distance between x, and x, 4 ; is at least (k + 1 — 1)/k. It follows that the distance
between x, and x; . ; exceeds 1, contradicting d(T,) = 1. This completes the proof
of Theorem B.

Our results are open for improvements. For example, Theorem A shows by
example that «(T;) > £ and A(T,) < 1.42n'/? is possible, whereas Theorem B
shows that a(T;) > % and A(T;) < 0.52n'/6 is impossible. Thus there are gaps in
the size of A(T,) for which the situation is still unresolved.
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